Разумеется, мы говорим о бумаге реальной, имеющей конечную, а не нулевую, толщину. Если складывать её аккуратно и до конца, исключая разрывы (это очень важно), то «отказ» складываться вдвое обнаруживается, обычно, уже после шестого раза. Реже – седьмого. Попробуйте проделать это с листком из тетради.
И, как ни странно, от размеров листа и его толщины ограничение мало зависит. То есть, просто так взять тонкий лист побольше, да и сложить его вдвое, раз допустим 30 или хотя бы 15 – не получается, как ни бейся.
В популярных подборках, типа «А знаете ли вы что…» или «Удивительное рядом», факт сей - что вот больше именно 8 раз сложить бумагу нельзя - до сих пор можно найти очень во многих местах, в Сети и вне. Но факт ли это?
Давайте рассуждать. Каждое сложение удваивает толщину кипы. Если толщину бумаги принять равной 0,1 миллиметра (размер листа мы сейчас не рассматриваем), то сложение её вдвое «всего» 51 раз даст толщину сложенной пачки в 226 миллионов километров. Что уже очевидный абсурд.
Кажется, тут-то мы начинаем понимать, откуда берётся известное многим ограничение на 7 или 8 раз (ещё раз – бумага у нас реальная, она не тянется до бесконечности и не рвётся, а порвётся – это уже не складывание). И всё же…
В 2001 году одна американская школьница решила вплотную заняться проблемой двойного складывания, а получилось из этого целое научное исследование, да ещё и мировой рекорд.
Собственно, началось всё с вызова, брошенного педагогом ученикам: «А вот попробуйте сложить хоть что-нибудь пополам 12 раз!». Мол, убедитесь, что это из разряда совершенно невозможного.
Бритни Гэлливан (Britney Gallivan) (заметим, сейчас она уже студентка) поначалу отреагировала как Алиса Льюиса Кэрролла: «Бесполезно и пробовать». Но ведь говорила Алисе Королева: «Осмелюсь сказать, что у вас не было большой практики».
Вот Гэлливан и занялась практикой. Порядком намучившись с разными предметами, она сложила-таки лист золотой фольги вдвое 12 раз, чем посрамила своего преподавателя.
На этом девушка не успокоилась. В декабре 2001 года она создала математическую теорию (ну, или математическое обоснование) процесса двойного складывания, а в январе 2002 года проделала 12-кратное складывание пополам с бумагой, используя ряд правил и несколько направлений складывания (для любителей математики, несколько подробнее - ).
Бритни заметила, что к этой проблеме ранее уже обращались математики, но правильного и проверенного практикой решения задачи ещё никто не предоставлял.
Гэлливан стала первым человеком, который правильно понял и обосновал причину ограничений на сложение. Она изучила накапливающиеся при складывании реального листа эффекты и «потерю» бумаги (да и любого иного материала) на сам сгиб. Она получила уравнения для предела складывания, для любых исходных параметров листа. Вот они:
Первое уравнение относится к складыванию полосы только в одном направлении. L - минимально возможная длина материала, t – толщина листа, и n - число выполненных сгибов в два раза. Разумеется, L и t должны быть выражены в одних и тех же единицах.
Во втором уравнении речь идёт о складывании в различных, переменных, направлениях (но всё равно – вдвое каждый раз). Здесь W – ширина квадратного листа. Точное уравнение для складывания в «альтернативных» направлениях – более сложное, но здесь приводится форма, дающая очень близкий к реальности результат.
Для бумаги, которая не является квадратом, вышеупомянутое уравнение всё ещё даёт весьма точный предел. Если бумага, скажем, имеет пропорции 2 к 1 (по длине и ширине), легко сообразить, что нужно сложить её один раз и «привести» к квадрату двойной толщины, а затем воспользоваться вышеупомянутой формулой, мысленно держа в уме одно лишнее складывание.
В своей работе школьница определила строгие правила двойного сложения. Например, у листа, который свёрнут n раз, 2n уникальных слоёв обязаны лежать подряд на одной линии. Секции листа, не удовлетворяющие этому критерию, не могут считаться как часть свёрнутой пачки.
Так вот Бритни и стала первым в мире человеком, сложившим лист бумаги вдвое 9, 10, 11 и 12 раз. Можно сказать, не без помощи математики.
24 января 2007 года в 72-м выпуске телепередачи «Разрушители легенд» команда исследователей попыталась опровергнуть закон. Они сформулировали его более точно:
Даже очень большой сухой лист бумаги нельзя сложить вдвое больше семи раз, делая каждый из сгибов перпендикулярно предыдущему.
На обычном листе А4 закон подтвердился, тогда исследователи проверили закон на огромном листе бумаги. Лист размером с футбольное поле (51,8×67,1 м) им удалось сложить 8 раз без специальных средств (11 раз с применением катка и погрузчика). По утверждению поклонников телепередачи, калька от упаковки офсетной печатной формы формата 520×380 мм при достаточно небрежном складывании без усилий складывается восемь раз, с усилиями - девять.
Обычная бумажная салфетка складывается 8 раз, если нарушить условие и один раз сложить не перпендикулярно предыдущему (на ролике после четвёртого - пятое).
«Головоломы» также проверили эту теорию.
Комментарии: 0 |
Научно образовательная программа, снятая в Австралии каналом ABC в 1969 году. Ведущим программы был Джулиус Семнер Миллер, который проводил эксперименты, относящиеся к различным дисциплинам в области физики.
Разрешите познакомить вас с одним из интересных свойств стекла, которое принято называть каплями (или слезами) принца Руперта. Если капнуть расплавленное стекло в холодную воду, оно застынет в форме капли с длинным тоненьким хвостиком. Из-за мгновенного охлаждения капля приобретает повышенную твердость, то есть раздавить ее не так уж и просто. Но стоит у такой стеклянной капли отломить тонкий хвост - и она тут же взорвется, рассыпая вокруг себя тончайшую стеклянную пыль.
Сергей Рыжиков
Лекции Сергея Борисовича Рыжикова с демонстрацией физических опытов прочитаны в 2008–2010 годах в Большой демонстрационной аудитории физического факультета МГУ им. М. В. Ломоносова.
В книге рассказывается о разнообразных связях, существующих между математикой и шахматами: о математических легендах о происхождении шахмат, об играющих машинах, о необычных играх на шахматной доске и т. д. Затронуты все известные типы математических задач и головоломок на шахматную тему: задачи о шахматной доске, о маршрутах, силе, расстановках и перестановках фигур на ней. Рассмотрены задачи «о ходе коня» и «о восьми ферзях», которыми занимались великие математики Эйлер и Гаусс. Дано математическое освещение некоторых чисто шахматных вопросов - геометрические свойства шахматной доски, математика шахматных турниров, система коэффициентов Эло.
Фразу, «лист бумаги нельзя сложить больше семи раз» можно понимать двояко. Во-первых, в том смысле, что это запрещено или существует какое-то поверье типа, если вы сложите лист бумаги 7 раз — случится несчастье. Об этом нигде нет информации.
Тогда эта фраза прозвучит так: «Невозможно сложить любой лист бумаги больше 7 раз». Становится интересно. И многие начинают пробовать складывать листы бумаги: тетрадный листок, стандартный лист А4, газетные полосы, салфетки. Благо бумага у всех под рукой. И почему же бумагу нельзя сложить больше 7 раз ?
Что получится если сложить бумагу 7 раз?
Уже при сложении в пятый раз начинаешь испытывать проблемы, шестое тоже получается с усилием. Седьмой раз складываем и с трудом и получаем толстый кусок бумажного многослойного «прямоугольника», который далее сложить, пополам никак не удается.
Возникает множество вопросов. Неужели существует такое ограничение? Есть ли предел сложения бумаги пополам? И главное, почему нельзя сложить бумагу больше 7 раз?
Кроме практического способа ответа на этот вопрос, можно объяснить «феномен» теоретически. Попробуем посчитать, сколько слоев в этом куске «неподдающейся бумаги. Сначала был одинарный лист бумаги, затем 2 слоя, потом 4 и так далее. При пятикратном сложении получим уже 32 слоя, 6-кратном 64, 7-кратном — 128!. То есть при восьмом сложении мы должны одновременно согнуть 128 слоя бумаги! Вот в чем дело, количество слоев бумаги растет в геометрической прогрессии. Сложить такой многослойный «пирог» вряд ли кому-то удастся с первого раза.
Кто может сложить бумагу больше 7 раз?
Но нашлись люди, которые попытались опровергнуть такое утверждение. Они рассуждали так: чем больше будет размер первоначальной бумаги, тем легче будет его сложить потом. Это действительно так. Ведь с увеличением размеров бумаги растет плечо силы, с которым мы прикладываем усилие по складыванию бумаги пополам. Это всем известное правило рычага: чем длиннее рычаг, тем больше момент силы, то есть во столько же раз увеличивается наша сила. Поэтому исследователи берут как можно большое по площади листы бумаги (вплоть до размеров футбольного поля) и складывают его. Правда при этом им приходится пользоваться техническим средствами (каток и погрузчик). В этом эксперименте им удалось сложить бумагу пополам 8 раз вручную, 11 раз с помощью техники.
Еще один способ развеять этот «миф» взять как можно более тонкий лист бумаги. И в этом опыте исследователям удалось превзойти предел равный семи. Тонкая калька (от офсетной бумаги) складывается 8 раз, с усилиями.
Итак, выводы. Поверье о том, что бумагу нельзя сложить более 7 раз пополам возникло не на пустом месте. Действительно складывать бумагу с каждым разом становится все труднее и труднее. Во всяком случае, существует предел складывания бумаги, одни говорят, что оно равно 7, другие 8 или более, но суть одна: бумагу нельзя сложить пополам бесконечное множество раз.
Введение
Физика – одна из величайших и важнейших наук, изучаемых человеком. Ее наличие видно в любых сферах жизни. Не редко открытия в физике меняют историю. Поэтому великие ученые и их открытия, по прошествии лет все также интересны, значимы для людей. Их работы актуальны и по сей день.
Физика - это наука о природе, изучающая наиболее общие свойства окружающего нас мира. Она изучает материю (вещество и поля) и наиболее простые и вместе с тем наиболее общие формы её движения, а также фундаментальные взаимодействия природы, управляющие движением материи.
Главная цель науки – выявить и объяснить законы природы, которыми определяются все физические явления, для использования их в целях практической деятельности человека.
Мир познаваем, и процесс познания бесконечен. Изучение окружающего нас мира показало, что материя находится в постоянном движении. Под движением материи понимают любое изменение, явление. Следовательно, окружающий нас мир – это вечно движущаяся и развивающаяся материя.
Физика изучает наиболее общие формы движения материи и их взаимные превращения. Некоторые закономерности являются общими для всех материальных систем, например, сохранение энергии, - их называют физическими законами.
Вот я и решил узнать, какие есть интересные факты, окружающие нас, которые можно объяснить с точки зрения физики.
Вот, например, я нашел информацию о том сколько раз можно сложить лист бумаги.
Видео:
Файлы:
- Текст работы: Сколько раз можно сложить лист бумаги? По состоянию на 16 января 2018 г. 13:01 (2,4 МБ)
Результаты экспертной оценки
Экспертная карта межрайонного этапа 2017/2018 (Экспертов: 3)
Сумма баллов: 8,3
Можно ли сложить лист более 7 раз? February 20th, 2018
Уже давно ходит такая распространённая теория, что ни один лист бумаги нельзя сложить вдвое больше семи (по некоторым данным — восьми) раз. Источник этого утверждения уже сложно найти. Между тем текущий рекорд складывания - 12 раз. И что удивительнее, принадлежит он девушке, математически обосновавшей эту «загадку бумажного листа».
Разумеется, мы говорим о бумаге реальной, имеющей конечную, а не нулевую, толщину. Если складывать её аккуратно и до конца, исключая разрывы (это очень важно), то «отказ» складываться вдвое обнаруживается, обычно, уже после шестого раза. Реже - седьмого.
Попробуйте проделать это сами с листком из тетради.
И, как ни странно, от размеров листа и его толщины ограничение мало зависит. То есть, просто так взять тонкий лист побольше, да и сложить его вдвое, раз допустим 30 или хотя бы 15 - не получается, как ни бейся.
В популярных подборках, типа «А знаете ли вы что…» или «Удивительное рядом», факт сей — что вот больше именно 8 раз сложить бумагу нельзя — до сих пор можно найти очень во многих местах, в Сети и вне. Но факт ли это?
Давайте рассуждать. Каждое сложение удваивает толщину кипы. Если толщину бумаги принять равной 0,1 миллиметра (размер листа мы сейчас не рассматриваем), то сложение её вдвое «всего» 51 раз даст толщину сложенной пачки в 226 миллионов километров. Что уже очевидный абсурд.
Мировая рекордсменка Бритни Гэлливан и бумажная лента, сложенная вдвое (в одном направлении) 11 раз
Кажется, тут-то мы начинаем понимать, откуда берётся известное многим ограничение на 7 или 8 раз (ещё раз - бумага у нас реальная, она не тянется до бесконечности и не рвётся, а порвётся - это уже не складывание). И всё же…
В 2001 году одна американская школьница решила вплотную заняться проблемой двойного складывания, а получилось из этого целое научное исследование, да ещё и мировой рекорд.
Собственно, началось всё с вызова, брошенного педагогом ученикам: «А вот попробуйте сложить хоть что-нибудь пополам 12 раз!». Мол, убедитесь, что это из разряда совершенно невозможного.
Бритни Гэлливан (Britney Gallivan) (заметим, сейчас она уже студентка) поначалу отреагировала как Алиса Льюиса Кэрролла: «Бесполезно и пробовать». Но ведь говорила Алисе Королева: «Осмелюсь сказать, что у вас не было большой практики».
Вот Гэлливан и занялась практикой. Порядком намучившись с разными предметами, она сложила-таки лист золотой фольги вдвое 12 раз, чем посрамила своего преподавателя.
Пример складывания листа вдвое четыре раза. Пунктир - предыдущее положение трёхкратного сложения. Буквы показывают, что точки на поверхности листа смещаются (то есть, листы скользят друг относительно друга), и занимают в результате не то положение, как может показаться при беглом взгляде
На этом девушка не успокоилась. В декабре 2001 года она создала математическую теорию (ну, или математическое обоснование) процесса двойного складывания, а в январе 2002 года проделала 12-кратное складывание пополам с бумагой, используя ряд правил и несколько направлений складывания (для любителей математики, несколько подробнее — тут).
Бритни заметила, что к этой проблеме ранее уже обращались математики, но правильного и проверенного практикой решения задачи ещё никто не предоставлял.
Гэлливан стала первым человеком, который правильно понял и обосновал причину ограничений на сложение. Она изучила накапливающиеся при складывании реального листа эффекты и «потерю» бумаги (да и любого иного материала) на сам сгиб. Она получила уравнения для предела складывания, для любых исходных параметров листа. Вот они.
Первое уравнение относится к складыванию полосы только в одном направлении. L — минимально возможная длина материала, t - толщина листа, и n — число выполненных сгибов в два раза. Разумеется, L и t должны быть выражены в одних и тех же единицах.
Во втором уравнении речь идёт о складывании в различных, переменных, направлениях (но всё равно - вдвое каждый раз). Здесь W - ширина квадратного листа. Точное уравнение для складывания в «альтернативных» направлениях - более сложное, но здесь приводится форма, дающая очень близкий к реальности результат.
Для бумаги, которая не является квадратом, вышеупомянутое уравнение всё ещё даёт весьма точный предел. Если бумага, скажем, имеет пропорции 2 к 1 (по длине и ширине), легко сообразить, что нужно сложить её один раз и «привести» к квадрату двойной толщины, а затем воспользоваться вышеупомянутой формулой, мысленно держа в уме одно лишнее складывание.
В своей работе школьница определила строгие правила двойного сложения. Например, у листа, который свёрнут n раз, 2n уникальных слоёв обязаны лежать подряд на одной линии. Секции листа, не удовлетворяющие этому критерию, не могут считаться как часть свёрнутой пачки.
Так вот Бритни и стала первым в мире человеком, сложившим лист бумаги вдвое 9, 10, 11 и 12 раз. Можно сказать, не без помощи математики.
А в 2007 году команда "Разрушителей легенд" решила сложить огромный лист, размером с половину футбольного поля. В итоге они смогли сложить такой лист 8 раз без специальных средств и 11 раз с применением катка и погрузчика.
И еще любопытное:
источники
Нам так и не удалось найти первоисточник этого широко распространённого поверья: ни один лист бумаги нельзя сложить вдвое больше семи (по некоторым данным — восьми) раз. Между тем текущий рекорд складывания – 12 раз. И что удивительнее, принадлежит он девушке, математически обосновавшей эту «загадку бумажного листа».
Разумеется, мы говорим о бумаге реальной, имеющей конечную, а не нулевую, толщину. Если складывать её аккуратно и до конца, исключая разрывы (это очень важно), то «отказ» складываться вдвое обнаруживается, обычно, уже после шестого раза. Реже – седьмого. Попробуйте проделать это с листком из тетради.
И, как ни странно, от размеров листа и его толщины ограничение мало зависит. То есть, просто так взять тонкий лист побольше, да и сложить его вдвое, раз допустим 30 или хотя бы 15 – не получается, как ни бейся.
В популярных подборках, типа «А знаете ли вы что…» или «Удивительное рядом», факт сей — что вот больше именно 8 раз сложить бумагу нельзя — до сих пор можно найти очень во многих местах, в Сети и вне. Но факт ли это?
Давайте рассуждать. Каждое сложение удваивает толщину кипы. Если толщину бумаги принять равной 0,1 миллиметра (размер листа мы сейчас не рассматриваем), то сложение её вдвое «всего» 51 раз даст толщину сложенной пачки в 226 миллионов километров. Что уже очевидный абсурд.
Мировая рекордсменка Бритни Гэлливан и бумажная лента, сложенная вдвое (в одном направлении) 11 раз (фото с сайта mathworld.wolfram.com).
Кажется, тут-то мы начинаем понимать, откуда берётся известное многим ограничение на 7 или 8 раз (ещё раз – бумага у нас реальная, она не тянется до бесконечности и не рвётся, а порвётся – это уже не складывание). И всё же…
В 2001 году одна американская школьница решила вплотную заняться проблемой двойного складывания, а получилось из этого целое научное исследование, да ещё и мировой рекорд.
Собственно, началось всё с вызова, брошенного педагогом ученикам: «А вот попробуйте сложить хоть что-нибудь пополам 12 раз!». Мол, убедитесь, что это из разряда совершенно невозможного.
Бритни Гэлливан (Britney Gallivan) (заметим, сейчас она уже студентка) поначалу отреагировала как Алиса Льюиса Кэрролла: «Бесполезно и пробовать». Но ведь говорила Алисе Королева: «Осмелюсь сказать, что у вас не было большой практики».
Вот Гэлливан и занялась практикой. Порядком намучившись с разными предметами, она сложила-таки лист золотой фольги вдвое 12 раз, чем посрамила своего преподавателя.
Пример складывания листа вдвое четыре раза. Пунктир – предыдущее положение трёхкратного сложения. Буквы показывают, что точки на поверхности листа смещаются (то есть, листы скользят друг относительно друга), и занимают в результате не то положение, как может показаться при беглом взгляде (иллюстрация с сайта pomonahistorical.org).
На этом девушка не успокоилась. В декабре 2001 года она создала математическую теорию (ну, или математическое обоснование) процесса двойного складывания, а в январе 2002 года проделала 12-кратное складывание пополам с бумагой, используя ряд правил и несколько направлений складывания (для любителей математики, несколько подробнее — ).
Бритни заметила, что к этой проблеме ранее уже обращались математики, но правильного и проверенного практикой решения задачи ещё никто не предоставлял.
Гэлливан стала первым человеком, который правильно понял и обосновал причину ограничений на сложение. Она изучила накапливающиеся при складывании реального листа эффекты и «потерю» бумаги (да и любого иного материала) на сам сгиб. Она получила уравнения для предела складывания, для любых исходных параметров листа. Вот они.
Первое уравнение относится к складыванию полосы только в одном направлении. L — минимально возможная длина материала, t – толщина листа, и n — число выполненных сгибов в два раза. Разумеется, L и t должны быть выражены в одних и тех же единицах.
Гэлливан и её рекорд (фото с сайта pomonahistorical.org).
Во втором уравнении речь идёт о складывании в различных, переменных, направлениях (но всё равно – вдвое каждый раз). Здесь W – ширина квадратного листа. Точное уравнение для складывания в «альтернативных» направлениях – более сложное, но здесь приводится форма, дающая очень близкий к реальности результат.